
1

User's Manual - version: 0.2

Cassio Neri

Table of Contents
1. Introduction .. 2
2. Download and install .. 4

2.1. Compiler ... 5
2.2. Build tools ... 5
2.3. Boost .. 5
2.4. Cygwin .. 5
2.5. OpenOffice SDK .. 6
2.6. Excel SDK .. 6

3. Configure and build .. 6
3.1. Using Microsoft Visual Studio 2008 IDE .. 7

4. Getting started with KeyValue ... 8
5. The KEYVALUE function .. 9
6. Key-value patterns ... 10

6.1. Key in single ... 11
6.2. Keys in vector ... 11
6.3. Keys in matrix ... 11
6.4. Table .. 11

7. Reserved keys ... 12
7.1. Processor .. 12

7.1.1. Commands ... 13
7.2. ProcessNow .. 13
7.3. VectorOutput ... 13
7.4. Imports .. 13
7.5. Export ... 13

8. Reserved processors .. 13
8.1. Logger .. 14
8.2. NumberOfDataSets .. 14
8.3. ListOfDataSets .. 14
8.4. DeleteDataSets ... 14

9. Key resolution and the Default data set ... 14
9.1. Importing a value from another key .. 15
9.2. Importing all key-value pairs from other data sets .. 15
9.3. Importing key-values from Default data set ... 16

10. Lexical conversions .. 16
11. Key mappings .. 16

11.1. Object map ... 16
11.2. Flag map ... 17
11.3. Partial map .. 17
11.4. No map ... 17

12. Design: the basics .. 17
12.1. Basic types ... 17
12.2. Values ... 18

12.2.1. Hierarchy of types and multi-level implicit conversions ... 18
12.3. Keys ... 18

12.3.1. Converter type .. 19
12.3.2. Map type .. 19
12.3.3. Generic keys .. 20

12.4. DataSet ... 21

KeyValue User's Manual

2

12.5. Processors .. 22
12.5.1. Commands ... 22
12.5.2. Building from a single value ... 22

12.6. Exceptions and Messages .. 23
13. How to implement the bridge library .. 24

13.1. How to implement class Bridge .. 24
13.2. How to implement a processor ... 24

13.2.1. Implementing a Calculator specialization .. 25
13.2.2. Implementing a Builder specialization ... 26

13.3. How to implement a key .. 26
13.3.1. Checking methods .. 27
13.3.2. Mapping methods ... 28

14. Linking with KeyValue .. 28
15. The Excel add-in .. 29

15.1. The help file .. 29
15.2. The menu of commands .. 30

1. Introduction
KeyValue is a cross-platform library for making C++ objects accessible through OpenOffice Calc, Excel and
other front-ends. Experience of spreadsheet users is enhanced by an object model and a handy key-value
based interface.

KeyValue does more than just help creating spreadsheet functions. The object model allows end-users to
build C++ objects through the front-ends. These objects are stored in a repository for latter use at user's
request. Additionally, KeyValue provides a set of services to an effective use of these objects.

The library is named ater one of its main features: The key-value based interface. Parameters are passed to
functions through key-value pairs in contrast to the standard positional interfaces of OpenOffice Calc, Excel,
C/C++, etc.

For instance, consider a function which requires stock prices at different dates. Two vectors have to be
passed: A vector of dates and a vector of prices. In a positional interface these two vectors would be rovided
in a specific order, say, first the vector of dates followed by the vector of prices. In contrast, KeyValue allows
a label (or key) to be attached to each vector (the value associated to the key) in order to distinguish their
meanings. In the example, the keys could be Dates and Prices while the values would be the vectors of dates
and prices themselves.

To give a taste of KeyValue, let us develop this example a bit further. Suppose we want to write a C++
function that, given a set of dates and corresponding stock prices, returns to the spreadsheet the earliest
date where the stock has reached its lowest level. In the termsheet we would see something like in Figure 1,
“Data organized in the spreadsheet.”.

Figure 1. Data organized in the spreadsheet.

The C++ code (see keyvalue/bridge-example/bridge-example/processor/LowTime.cpp) could
be:

template <>
value::Value
Calculator<LowTime>::getValue(const DataSet& data) const { // A

 const key::MonotoneBoundedVector<ptime, key::StrictlyIncreasing>

../../ref/html/classkeyvalue_1_1value_1_1Value.html
../../ref/html/classkeyvalue_1_1Calculator.html
../../ref/html/classkeyvalue_1_1Calculator.html#8028622ca5e6083ba9f57aaac3e88a97
../../ref/html/classkeyvalue_1_1DataSet.html
../../ref/html/classkeyvalue_1_1key_1_1MonotoneBoundedVector.html
../../ref/html/classkeyvalue_1_1key_1_1StrictlyIncreasing.html

KeyValue User's Manual

3

 keyDates("Dates"); // B

 const std::vector<ptime>& dates(*data.getValue(keyDates)); // C

 const key::MonotoneBoundedVector<double, key::NonMonotone, key::Geq>
 keyPrices("Prices", 0.0, dates.size()); // D

 const std::vector<double>& prices(*data.getValue(keyPrices)); // E

 double lowPrice = prices[0]; // F
 ptime lowDate = dates[0];

 for (size_t i=1; i<prices.size(); ++i)
 if (prices[i] < lowPrice) {
 lowPrice = prices[i];
 lowDate = dates[i];
 } // G

 return lowDate; // H
}

Without getting too deep in the details, we shall comment some important points of this example:

A:
Functions returning values to the spreadsheet are specializations of template class Calculator of
which getValue() is the main method. The template type parameter LowTime is just a tag identifier
to distinguish between different functions.

B:
Object keyDates holds information about key Dates including the label "Dates" seen on the
spreadsheet. Its type is an instantiation of key::MonotoneBoundedVector for type parameters
ptime and key::StrictlyIncreasing. This means that the expected type of value is a
std::vector<ptime>1 object whose elements are in increasing order.

Many other generic keys like key::MonotoneBoundedVector are implemented. We can implement
application specific keys when no generic key fits our needs or when this proves to be convenient. For
instance, implementing a class named Dates can be useful if key Dates is used very often. In such case,
Dates would hold all the above information and line B would be replaced by

const Dates keyDates;

C:
The method DataSet::getValue() retrieves the std::vector<ptime> object containing the dates.
At this time, all the information contained in keyDates is used. In particular, the constraints on the input
are verified and an exception is thrown if the check fails. Therefore, if execution gets to next line, we can
safely assume that dates are in increasing order.

D:
Object keyPrices carries information about key Prices: the label "Prices" and its expected type of
value, that is, a std::vector<double> object of size dates.size() and positive elements.

E:
Retrieves the std::vector<double> object and, if execution gets to next line, we can be sure that
prices and dates have the same size and all price elements are positive. Otherwise an exception
will be thrown.

F - G:
This bit of code could be part of the library which KeyValue helps to make accessible through OpenOffice
Calc or Excel instead of being here.

1KeyValue uses time and date class ptime from Boost's Date_Time library.

../../ref/html/classkeyvalue_1_1DataSet.html#5776fa17456c25c25675625c85239c91
../../ref/html/classkeyvalue_1_1key_1_1MonotoneBoundedVector.html
../../ref/html/classkeyvalue_1_1key_1_1NonMonotone.html
../../ref/html/classkeyvalue_1_1key_1_1Geq.html
../../ref/html/classkeyvalue_1_1DataSet.html#5776fa17456c25c25675625c85239c91
../../ref/html/classkeyvalue_1_1Calculator.html
../../ref/html/classkeyvalue_1_1Calculator.html#8028622ca5e6083ba9f57aaac3e88a97
../../ref/html/classkeyvalue_1_1key_1_1MonotoneBoundedVector.html
../../ref/html/classkeyvalue_1_1key_1_1StrictlyIncreasing.html
../../ref/html/classkeyvalue_1_1key_1_1MonotoneBoundedVector.html
../../ref/html/classkeyvalue_1_1DataSet.html
../../ref/html/classkeyvalue_1_1DataSet.html#5776fa17456c25c25675625c85239c91
http://www.boost.org

KeyValue User's Manual

4

H:
While the type returned by Calculator<LowTime>::getValue() is value::Value the code
above returns a ptime. For convenience, KeyValue implements a collection of implicit conversions to
value::Value from several types including bool, double, string, ptime, std::vector<double>,
etc.

More than just a nice interface, KeyValue provides memory management, dependency control, exception
handling, caching (memoization) and other services.

The two main examples of front-ends (both provided with KeyValue) are OpenOffice Calc and Excel. A third
example is an XML parser. Other front-ends may be easily implemented thanks to KeyValue's modular design
represented in Figure 2, “KeyValue's design.”.

There are four layers. The main layer is occupied by KeyValue alone and is independent, that is, does not
#include any header file from other layers.

Figure 2. KeyValue's design.

The top layer is populated by front-ends. Components of this layer only #include header files from KeyValue.
(Fact indicated by the down arrow.)

The bottom layer hosts the core library, that is, the C++ library which we want to use through front-ends with
KeyValue's help. This layer is also independent. As mentioned, in the example above the code between lines
F and G woulb be better placed in the core library.

The bridge layer connects KeyValue and core library. Bridge #includes files from both layers it is connected
to. The code given in the example above would be part of this layer.

Additionally to KeyValue layer, the distibuted code contains the front-ends (excluding the XLM parser which
will be available in a future release). KeyValue users have to implement the bridge and core library. If they
wish, they can also easily implement other front-ends.

2. Download and install
KeyValue is available in standard formats at SourceForge.

http://sourceforge.net/projects/keyvalue/files

Just download and unpack it into your hard disk.

Windows Vista users must perform an extra step. As we shall see below, KeyValue build system relies on
Cygwin. For some reason, Cygwin fails to copy some files. To prevent this from happening, turn KeyValue's
home directory and all its descendants into shared folders. Right click on KeyValue's home directory and
select Properties. Then, click on Sharing / Share ... / Share / Done / Close. Then the directory gets a new
icon with a two-people picture.

../../ref/html/classkeyvalue_1_1Calculator.html
../../ref/html/classkeyvalue_1_1Calculator.html#8028622ca5e6083ba9f57aaac3e88a97
../../ref/html/classkeyvalue_1_1value_1_1Value.html
../../ref/html/classkeyvalue_1_1value_1_1Value.html
http://sourceforge.net/projects/keyvalue/files

KeyValue User's Manual

5

KeyValue depends on a few libraries and tools. Some of them are compulsory while others depends on the
user's purpose. The following sections list those tools and libraries.

2.1. Compiler
Two C++ compilers are supported: Microsoft Visual C++ 2008 (for Windows) and GCC (for GNU/Linux).

Most of GNU/Linux distributions come with GCC already installed. KeyValue has been tested with version
4.x.x but other versions should work as well.

Microsoft provides different editions of Visual Studio C++ 2008. The Express Edition is available, free of
charge, at

http://www.microsoft.com/express/download

Editions differ mainly in their IDEs. However, there are a few differences on compilers as well. During
KeyValue's development we came across lines of code that the Professional Edition could compile while
Express Edition failed. Some effort has been made to maintain compatibility with both editions.

2.2. Build tools
We need additional build tools, notably, GNU make and the bash shell.

GNU/Linux users do not have to worry about most of these tools since they are probably installed by default.
However, a less popular tool called makedepend is needed as well. Normally, it is part of the x11 or xorg
packages. To check whether you have it or not, on a console window type:

$ makedepend

If not found, use your distribution's package system to install it or, alternatively, download and install from
source code:

http://xorg.freedesktop.org/releases/individual/util

Windows users will also need those tools but, unfortunately, they are not directly available. Therefore, Cygwin
(see Section 2.4, “Cygwin”) will be needed to have a GNU/Linux-compatibility layer.

2.3. Boost
Boost is a high quality set of C++ libraries for general purposes.

KeyValue depends on a few of Boost libraries notably Smart_Ptr (for shared pointers) and Date_Time (for
date and time classes). All Boost libraries that KeyValue depends on are header-only. Therefore, all we need
is to download and unpack Boost in the hard disk.

As of this writing, the latest Boost release is 1.44.0. KeyValue have been tested with version 1.38.0. Any
newer version should work as well.

When compiling KeyValue with MSVC and Boost 1.44.0, one gets several annoying warnings which seems
to be harmless. (See issue #3084655). Prefer using an earlier version of Boost (e.g. 1.43.0) or a latter one
(when released) where this issue has been fixed.

Boost is available for download at its SourceForge page:

http://www.boost.org/users/download/

2.4. Cygwin
KeyValue is a cross platform library for GNU/Linux and Windows systems. Its build system relies on tools that
are very popular on GNU/Linux systems but not on Windows. For that reason, Windows users must install
Cygwin to have a GNU/Linux-like compatibility layer. Cygwin is available at

http://www.microsoft.com/express/download
http://xorg.freedesktop.org/releases/individual/util
https://sourceforge.net/tracker/index.php?func=detail&aid=3084655&group_id=268784&atid=1143571
http://www.boost.org/users/download/

KeyValue User's Manual

6

http://www.cygwin.com

During installation we have to make a few choices. Normally, default answers are fine. However, when
choosing the packages to install, make sure the following items are selected:

• Archive/zip (needed to build the OpenOffice Calc add-in);

• Devel/make; and

• Devel/makedepend.

Although installation procedures for KeyValue developers is not in the scope of this document, we anticipate
here the list of extra Cygwin packages that developers must install:

• Archive/zip; and

• Doc/libxslt; and

• Utils/diffutils.

Cygwin comes with a small tool called link to create file links (shortcuts). This tool is, probably, useless since
there is a Windows native alternative and Cygwin also provides ln for the same purpose. Unfortunately, we
must bother with link because it shares its name with the Microsoft linker, raising a conflict. A workaround
is renaming link to, say, link-original. Open a Bash Shell by clicking on Start / Programs / Cygwin Gygwin
Bash Shell and type the command below followed by Enter.

$ mv /usr/bin/link.exe /usr/bin/link-original.exe

On many occasions we need to type Bash Shell commands. Therefore, remember how to get a Bash shell
console window and consider keeping it constantly open while working with KeyValue.

2.5. OpenOffice SDK
KeyValue comes with an OpenOffice Calc add-in for GNU/Linux and Windows systems. To build this add-
in, one must install the OpenOffice SDK.

The OpenOffice Calc add-in has been tested with some 3.x.x versions of OpenOffice and OpenOffice SDK.
It probably works with all 3.x.x versions. Users of versions 2.x.x are advised to upgrade their systems.

Download and install a OpenOffice SDK version compatible with your installed OpenOffice:

http://download.openoffice.org/sdk/index.html

2.6. Excel SDK
KeyValue comes with an Excel add-in. To build this add-in, one must install the Excel SDK.

Only the Excel 2007 API is supported. If compatibility with this API is kept by new Excel releases, then the
add-in should work with them as well. However, it does not work with Excel 2003.

Download Excel 2007 SDK from its website

http://www.microsoft.com/downloads/details.aspx?FamilyId=5272E1D1-93AB-4BD4-AF18-
CB6BB487E1C4&displaylang=en

3. Configure and build
Locate the file config/config.mak-example in KeyValue's home directory. Make a copy named
config.mak and edit it with a text editor. The file contains detailed explanations.

We emphasize one particular instruction presented in the file. If you are not yet familiar with KeyValue, then
leave the variables FELIBS_debug and FELIBS_release as they are. This allows for the building of the
add-in used in Section 4, “Getting started with KeyValue”.

http://www.cygwin.com
http://download.openoffice.org/sdk/index.html
http://www.microsoft.com/downloads/details.aspx?FamilyId=5272E1D1-93AB-4BD4-AF18-CB6BB487E1C4&displaylang=en
http://www.microsoft.com/downloads/details.aspx?FamilyId=5272E1D1-93AB-4BD4-AF18-CB6BB487E1C4&displaylang=en

KeyValue User's Manual

7

On a Bash Shell console, go to KeyValue's home directory. For instance, assuming KeyValue was unpacked
in /home/cassio/keyvalue, type

$ cd /home/cassio/keyvalue

Under Cygwin one has to prefix the directory name by the drive letter. Supposing that KeyValue was unpacked
in C:\Users\cassio\Documents\keyvalue, type

$ cd C:/Users/cassio/Documents/keyvalue

To build the debug version (the default):

$ make

To build the release version:

$ make release

Additionally, make accepts other targets. To get a list of them:

$ make help

It also shows the list of projects to be compiled as chosen in config.mak.

3.1. Using Microsoft Visual Studio 2008 IDE
Microsoft Visual Studio 2008 users will find target sln very helpful. The command

$ make sln

creates a Microsoft Visual Studio 2008 solution (keyvalue.sln) and project files which allows for using
Microsoft Visual Studio IDE, liberating users from direct calling make on Cygwin. Two configurations, debug
and release, are set in keyvalue.sln.

Open keyvalue.sln. On the solution explorer (Ctrl+Alt+L), we see the projects. Initially, the start up project
will be the first on alphabetic order. Change it to either excel-addin or openoffice-addin: Right click on the
project name and then on Set as StartUp Project.

To configure excel-addin and openoffice-addin projects to call the appropriate applications under the
debugger:

• Right click on excel-addin project, select Properties and then Debugging. Edit the fields following the
example shown in Table 1, “Configuring MSVC debugger for excel-addin.”.

Table 1. Configuring MSVC debugger for excel-addin.

Field Content

Command Full path of Excel executable (e.g. C:
\Program Files\Microsoft Office
\Office12\EXCEL.EXE)

Command Arguments out\windows-msvc-debug\keyvalue.xll

• Right click on openoffice-addin project, select Properties and then Debugging. Edit the fields following the
example shown in Table 2, “Configuring MSVC debugger for openoffice-addin.”.

Table 2. Configuring MSVC debugger for openoffice-addin.

Field Content

Command Full path of soffice executable (e.g.
C:\Program Files\OpenOffice.org
3\program\soffice.bin)

KeyValue User's Manual

8

Field Content

Command Arguments -nologo -calc

Environment PATH=C:\Program Files\OpenOffice.org
3\program;C:\Program Files
\OpenOffice.org 3\URE\bin;C:\Program
Files\OpenOffice.org 3\Basis\program

4. Getting started with KeyValue
The easiest way to get familiar with KeyValue's features is using OpenOffice or Excel add-ins based on it.
KeyValue comes with examples of core and bridge libraries allowing for the build of an OpenOffice and an
Excel add-in. This section introduces some of these features using these add-ins as example.

We assume you are familiar with the basics of OpenOffice Calc or Excel. These two applications have very
similar user interfaces. For this reason, we address instructions to OpenOffice Calc users only. Excel users
should not have trouble in adapting them. Moreover, remember that OpenOffice is open source software
available at

http://www.openoffice.org

It is worth mentioning one interface difference between OpenOffice Calc and Excel. In both, either double-
clicking or pressing F2 on a cell start its editing. Pressing Enter finishes the edition. If the new content is a
formula, while Excel immediately calculates the result, OpenOffice Calc recalculates only if it belieaves the
cell's content has changed. In particular, F2 followed by Enter recalculates a cell formula in Excel but not
in OpenOffice Calc. To force OpenOffice Calc to recalculate the cell, we have to fake a change. Therefore,
keep in mind the following:

To recalculate a cell formula double click on the cell (or press F2 if the cell is the current one), then press Left
Arrow followed by Enter. To recalculate a formula range, in OpenOffice one must select the whole range
(select any cell in the range and then press Ctrl+/) before pressing F2.

From spreadsheet applications, KeyValue derives some terminology regarding data containers:

Single
Is a piece of data that, in a spreadsheet application, would fit in a single cell. For instance, the number
1.0 or the text "Foo".

Vector
Is a collection of data that, in a spreadsheet, would fit in a one-dimensional range of cells like A1:J1 or
A1:A10. More precisely, when those cells are one beside another in a row we call it a row vector (e.g.
A1:J1). When the cells are one above another in a column (e.g. A1:A10) we call it a column vector. In
particular, a single is both a row and a column vector.

Matrix
Is a collection of data that, in a spreadsheet, would fit in a two dimensional range of cells like A1:B2. In
particular, single and vector are matrices.

After building Keyvalue with its core and bridge examples (see Section Section 3, “Configure and build”),
under KeyValue's home directory, we should have a ready-to-use OpenOffice add-in named keyvalue.oxt
(or an Excel add-in named keyvalue.xll). The exact location is shown in Table 3, “Location of Excel and
OpenOffice add-ins.”.

Table 3. Location of Excel and OpenOffice add-ins.

Build OpenOffice (GNU/Linux) OpenOffice (Windows) Excel

Debug openoffice-addin/
out/linux-gcc-debug

openoffice-addin
\out\windows-msvc-
debug

excel-addin\out\windows-
msvc-debug

http://www.openoffice.org

KeyValue User's Manual

9

Build OpenOffice (GNU/Linux) OpenOffice (Windows) Excel

Release openoffice-addin/
out/linux-gcc-
release

openoffice-addin
\out\windows-msvc-
release

excel-addin\out\windows-
msvc-release

Launch OpenOffice Calc, open the debug add-in and the example workbook keyvalue.ods (or
keyvalue.xlsx for Excel) located in doc/workbooks.

Notice that a console window pops up. KeyValue uses it to present some output, notably error messages.

5. The KEYVALUE function
Cell B2 on The KEYVALUE function sheet of the example workbook contains a formula calling the function
KEYVALUE:

=KEYVALUE("Triangle";B3:C6)

Figure 3. Data set Triangle.

This function call is meant to build a triangle.

We can see that cells with dark blue background in the sheet contain formulas calling KEYVALUE to build
polygons and to calculate their areas.

There are no functions such as BuildPolygon, CalculateArea or anything similar. Indeed, independently
on the core-library, KEYVALUE is the only function exported to OpenOffice Calc.

Actually, the name of this function is defined by the bridge library. In the examplary bridge the function is
called KEYVALUE and, for the sake o concreteness, in this document we shall always assume this name.

This is not as odd as it might seem (one could expect to call different functions for different tasks). Even
when calling a specific function for a precise task, the function might change its behaviour depending on the
data it receives. For instance, a function CreatePolygon would create a triangle or a square (or whatever)
depending on the number of sides given. KeyValue goes one step further and considers the choice of the
task as part of the input data as well.

Alternatively, we can think that KEYVALUE does have one single task: It creates data sets. A data set
is a collection of data organized in key-value pairs (recall the stock prices example given in Section 1,
“Introduction”). The example above creates a data set called Triangle containing key-value pairs defined by
the array B3:C6 (more details to follow). Analogously, the formula in cell E2

=KEYVALUE("Square";E3:F6)

creates a data set called Square containing key-value pairs defined by array E3:F6.

Figure 4. Data set Square

More generally, KEYVALUE's first parameter is the name of the data set to be created. This is a compulsory
parameter of text type (which might be left empty "" for anonymous data sets). Moreover, as in these
examples, often the data set name is the result returned from KEYVALUE to OpenOffice Calc.

KeyValue User's Manual

10

Once created, a named data set is stored in a repository and might be retrieved latter through its name.

Other KEYVALUE's parameters are optional and define key-value pairs following patterns discussed in next
section.

6. Key-value patterns
KEYVALUE's parameters, from second onwards, define the data set. Although there is some flexibility on how
they are organized, they must follow certain patterns. It allows the library to break down the parameters in
key-value pairs. Recalculate [8] cell B2 of sheet The KEYVALUE function and take a look at the console
logger to see the key-value pairs of data set Triangle.

[Debug] DataSet: Triangle
Size : 4
 Key #1: Base
 Value #1: [Single] 2
 Key #2: Height
 Value #2: [Single] 3
 Key #3: IsRegular
 Value #3: [Single] 0
 Key #4: Processor
 Value #4: [Single] Polygon

Figure 5. Console logger shows key-value pairs in data set Triangle.

For a text to define a key, it is necessary but not sufficient that:

• excluding trailing spaces it ends with " =" (space + equal sign); and

• excluding the ending "=", it contains a non space character.

KeyValue replaces the last "=" (equal sign) by " " (space) and, from the result, removes leading and trailing
spaces. What remains is the key. For instance, all data sets in sheet The KEYVALUE function contain a key
called Processor defined by the text "Processor =".

The conditions above are not sufficient to define a key since the patterns mentioned earlier also play a role in
this matter. For instance, in data set Trap of sheet Key-value patterns , "Foo =" does not define a key Foo.

Figure 6. "Foo =" seems to define a key but it does not.

Actually, it assigns the value "Foo =" to key B as you can verify in the console after recalculating [8] B2.

[Debug] DataSet: Trap
 Size : 4
 Key #1: A
 Value #1: [Single] 1
 Key #2: B
 Value #2: [Single] Foo =
 Key #3: C
 Value #3: [Single] 3
 Key #4: D
 Value #4: [Single] 4

Figure 7. Console shows that "Foo =" is the value assigned to key B.

KeyValue User's Manual

11

The following sections explain the patterns and clarify this point.

6.1. Key in single
This pattern is composed by two parts: A single containing a text defining a key (i.e. verifying the necessary
conditions [10]) followed by either a single, vector or matrix, which will be the associated value. Those
three possibilities are shown on the sheet Key-value patterns.

Figure 8. Key in single pattern.

6.2. Keys in vector
There are two cases of this pattern. The first (the transpose of the second) is composed by a column vector
and a matrix such that

• they have the same number of rows; and

• the vector contains only keys (i.e. all cells contain text verifying the necessary conditions [10]).

Figure 9. Keys in vector pattern.

Furthermore, for each key in the vector, the corresponding row in the matrix defines a vector which is the
value associated to the key.

6.3. Keys in matrix
There are two cases of this pattern. The first (the transpose of the second) is composed by a matrix such that

• it has at least two columns;

• the first column contains only keys (i.e. all cells contain text verifying the necessary conditions [10]); and

• the first cell of second column is not a key (i.e. it does not contain text verifying the necessary conditions
 [10]).

Figure 10. Keys in matrix pattern.

Furthermore, for each key in the first column, the remaining cells on the same row define a vector which is
the value associated to the key.

6.4. Table
Useful for tables, this pattern is made by one matrix M = M(i, j) , for i = 0, ..., m-1 and j = 0, ..., n-1 (with m>2
and n>2). In M we find three key-value pairs: row, column and table. There are two variants of this pattern:

KeyValue User's Manual

12

Format 1:
The row key is in M(1, 0) and its value is the column vector M(i, 0) for i = 2, ..., m-1. The column key is
in M(0, 1) and its value is the row vector M(0, j) for j = 2, ..., n-1. Finally, the table key is in M(0,0) and
its value is the sub-matrix M(i, j) for i = 2, ..., m-1 and j = 2, ..., n-1.

Format 2:
The row key is in M(2, 0) and its value is the column vector M(i, 1) for i = 2, ..., m-1. The column key is in
M(0, 2) and its value is the row vector M(1, j) for j = 2, ..., n-1. Table key and value are as in Format 1.
This variant is more aestheticly pleasant when some cells are merged together as show in data set Table
#2 (merged) in Figure 11, “Table pattern. A is the row key, B is the column key and AxB is the table key.”.

Figure 11. Table pattern. A is the row key, B is the column key and AxB is the
table key.

7. Reserved keys
Some keys are reserved to KeyValue's use. They are explained in the following sections.

7.1. Processor
The task performed on a data set is defined exclusively by its content. Indeed, excluding the Default data
set (see Section 9, “Key resolution and the Default data set”), the value assigned to key Processor informs
the action to be performed. More precisely, the bridge library implements a number of processors which
perform different tasks on data sets. In any data set, the value assigned to key Processor (if present) names
the processor which process the data set.

For instance, on sheet Reserved keys, the formula in B2 creates data set A which selects processor Polygon
while the one in E2 creates an anonymous data set which selects processor Area. Recalculate [8] B2
to verify on the logger the called processors:

[Debug] DataSet: A
 Size : 4
 Key #1: IsRegular
 Value #1: [Single] 1
 Key #2: NumberOfEdges
 Value #2: [Single] 4
 Key #3: Processor
 Value #3: [Single] Polygon
 Key #4: Size
 Value #4: [Single] 1
[Debug] DataSet:
 Size : 2
 Key #1: Polygon
 Value #1: [Single] A
 Key #2: Processor
 Value #2: [Single] Area

Figure 12. In each data set, its key Processor selects the processor for this data set.

Processors that create objects are called builders (e.g. Polygon). Those that compute results are called
calculators (e.g. Area).

Key Processor is optional. A data set which does not have such key is called data-only.

KeyValue User's Manual

13

7.1.1. Commands

Some processors might perform their tasks on empty data sets or, more precisely, on data sets whose unique
key is Processor. For instance, as we see in Section 8.4, “DeleteDataSets”, the processor DeleteDataSets
reset the data set repository when key DataSets is not present. The bridge library can declare such processors
as commands.

Front-ends may provide special support for commands. For instance, the Excel add-in presents a menu
from which one can call any command. The add-in creates an anonymous data set with key Processor and
whose value is DeleteDataSets. Since the data set is anonymous it is immediately processed (as explained
in Section 7.2, “ProcessNow”).

Notice that the name shown on the menu might be different from processor's name. In our example, processor
DeleteDataSets becomes Reset repository.

7.2. ProcessNow
On sheet Reserved keys, the formula in B2 actually does not build any polygon. Indeed, for non anonymous
data sets, by default KeyValue implements a lazy initialization strategy: It avoids to call processors until this
is really necessary. In this case, all KEYVALUE does is creating the data set A which latterly might be used to
build a polygon. In this example it will happen when we request its area in E2.

Key ProcessNow is used to change this behaviour. If ProcessNow is TRUE, then the data set is immediately
processed and the result is returned to the front-end. Otherwise, KeyValue just creates and stores the data
set for latter use and the result returned to the front-end is the data set name. Change cell C10 to TRUE and
FALSE and check on the logger when the processor is called.

Anonymous data sets are always processed and, therefore, ProcessNow is ignored. Change F10 and check
the logger.

This key is optional and when it cannot be resolved (see Section 9, “Key resolution and the Default data set”)
assumes the value FALSE.

7.3. VectorOutput
When the result of KEYVALUE is a vector the user may choose how this vector should be returned to the
front-end: As a column vector, as a row vector or unchanged, i.e., as it is returned by the processor. For this
purpose, the key VectorOutput might be assigned to "Row", "Column" or "AsIs".

This key is optional and when it cannot be resolved (see Section 9, “Key resolution and the Default data set”)
assumes the value "AsIs".

7.4. Imports
Key Imports is optional. Its value is a vector of data set names whose keys and values are imported to the
current data set. For more details see Section 9.2, “Importing all key-value pairs from other data sets”.

7.5. Export
Key Export is reserved only in Default data set where it defines whether key-value pairs in Default participate
in key resolution or not. (See Section 9, “Key resolution and the Default data set”.)

8. Reserved processors
The processors Polygon and Area were implemented by the bridge-example which comes with KeyValue.
This bridge is intent to be used only as an example, and should not be linked with more serious applications
(yours) which means these processors will not be available. However, a few processors are implemented by

KeyValue User's Manual

14

KeyValue itself and not by the bridge library. See the Reserved Processors sheet of the example workbook
for examples of reserved processors.

8.1. Logger
This processor builds a logger where KeyValue sends messages to. The input data set should contain the
following keys:

Device
Compulsory key that defines the type of logger. Possible values are:

• "Standard" - messages are shown in the stdout;

• "Console" - messages are shown in a console window; and

• "File" - messages are saved in a file.

Level
Compulsory key that defines the logger's verbosity level. Any non negative integer number is an allowed
value.

Loggers receive messages with verbosity levels. A m-level logger shows a n-level message if m>n or
the message is an error. Otherwise the message is ignored. Therefore, a 0-level logger ignores all but
error messages.

FileName
This key is compulsory when Device is "File" and ignored in other cases. It specifies the output file name.

Global
The core library can use different loggers for different purposes. Hence, users are able to build many
loggers at the same time. However, all KeyValue messages are sent to the global logger. This key can
assume the values TRUE or FALSE and tells KeyValue if the new logger must replace the current global
logger.

8.2. NumberOfDataSets
This processor does not have any specific key. It returns the number of data sets currently stored by the
repository.

8.3. ListOfDataSets
This processor does not have any specific key. It returns a vector with the names of data sets currently stored
in the repository.

8.4. DeleteDataSets
Deletes a list of data sets from the repository. Only one key is expected:

DataSets
This is an optional key which list the names of all data sets to be erased. If this key is ommited, then
all data sets will be removed.

This processor returns the number of data sets that were effectively deleted from the repository.

9. Key resolution and the Default data set
Normally, when retrieving the value associated to a key in a given data set, KeyValue finds it in the same
data set. However, this is not always the case. The process of finding the correct value assigned to a given
key is called key resolution .

KeyValue User's Manual

15

The most basic way to assign a value to a key is providing the key-value pair as we have seen so far.
Additionally, there are three ways to import values from different keys and data sets.

9.1. Importing a value from another key
We can import the value of a key from another key. Moreover, the source key might be in a different data set.
For this purpose, instead of providing the value for the key we should put a reference in the following format:

key-name@data-set-name

where key-name is the name of source key and data-set-name is the name of source data set. You can leave
either key-name or data-set-name blank to refer to the same key or data set.

For instance, on sheet Key resolution and Default data set, key Size in data set Polygon #1 has the same
value as Length in data set Small.

Figure 13. Polygon #1 imports key Size from key Length in data set Small.

Data set Polygon #2 imports key Size from data set Large.

Figure 14. Polygon #2 imports key Size from data set Large.

In data set Polygon #3 keys Size and NumberOfEdges have the same value.

Figure 15. Polygon #3 imports key Size from its own key NumberOfEdges.

9.2. Importing all key-value pairs from other data sets
We can import all key-value pairs from one or more data sets into the current one through the key Imports.
The value associated to Imports must be a vector of data set names. All key-value pairs in any of those data
sets are imported to the data set containing Imports.

Keys assigned locally, either directly or through references, take precedence over imported keys. Data sets
assigned to key Imports are processed in the order they appear.

For instance, on sheet Key resolution and Default data set, Polygon #4 imports keys first from Large and
second from Polygon #3. Only keys that are not found neither in Polygon #4 nor in Large will be imported
from Polygon #3. Therefore, key NumberOfEdges is assigned locally, key Size is imported from Large and
isRegular is imported from Polygon #3.

Figure 16. Use of key Imports.

KeyValue User's Manual

16

9.3. Importing key-values from Default data set
After searching a key locally and in imported data sets, if the key is still not resolved, then KeyValue makes
a last trial searching in a special data set named Default. To make this search effective, Default must have
a key Export set to TRUE.

For instance, on sheet Key resolution and Default data set, Polygon #5 imports all keys, but Processor, from
Default.

Figure 17. Polygon #5 imports all keys, but Processor, from Default.

10. Lexical conversions
Front-ends may lack representation for some of KeyValue's basic types: number, text, boolean and date. In
that case lexical conversions are required. For instance, OpenOffice Calc and Excel do not have specific
representations for time. Instead, they use a double which represents the number of days since a certain
epoch. Therefore, the front-end must convert from double to KeyValue's representation of time.

Moreover, lexical conversions can make user interface more friendly. For instance, OpenOffice Calc and
Excel users might prefer to use "Yes" and "No" rather than the built-in boolean values (TRUE and FALSE).

Front-ends must implement all lexical converters they need. The lexical conversion cited above (from text to
boolean values) is, indeed, implemented for OpenOffice and Excel add-ins. Instead of TRUE and FALSE we
can use any of the following strings:

• "TRUE", "True", "true", "YES", "Yes", "yes", "Y", "y"; or

• "FALSE", "False", "false", "NO", "No", "no", "N", "n".

Additionally, OpenOffice and Excel add-ins implement lexical conversions from text to number, that is,
providing the text "1.23" when a number is required is the same as providing the number 1.23.

11. Key mappings
Sometimes, a text assigned to a key is mapped to some other type in a process called key mapping. The
four types of key mappings are described in the following sections.

11.1. Object map
This is the most typical example of key mapping: An object name is mapped to the object itself.

On sheet The KEYVALUE function of the example workbook, the formula in cell B8 returns the area of a
certain polygon.

Figure 18. The value assigned to key Polygon, i.e., "Triangle" is mapped to an
object (the triangle, itself).

Notice that value assigned to key Polygon is the text "Triangle". Rather than a text, the processor Area
requires a polygon to computes its area. Therefore, when the processor asks for the value associated to key
Polygon, KeyValue maps the text "Triangle" to a polygon which is returned to the processor.

KeyValue User's Manual

17

More precisely, the text names a data set which is stored by the repository and defines an object. When
an object is required the named data set is retrieved and passed to a processor (defined by key Processor)
which creates the object. Then, the object is returned to the processor which has initiated the call.

11.2. Flag map
A text is mapped to some other basic type. For instance, consider a key Month. The user might prefer to
provide text values: "Jan", "Fev", ..., "Dec". On the other hand, for the processor, numbers 1, 2, ..., 12 might
be more convenient.

This mapping is very similar to the lexical conversion from "Yes" to TRUE as discussed in section Section 10,
“Lexical conversions”. The difference is that opposite to lexical conversions, flag map depends on the key.
For instance, for a key Planet the text "Mar" might be mapped to something representing the planet Mars
(e.g. the number 4 since Mars is the forth planet of our solar system) rather than the month of March.

11.3. Partial map
Like flag map, a text is mapped into a number or date. However, the user can also provide the corresponding
number or date instead of the text.

For instance, the key NumberOfEdges used in our example workbook implements a partial map. Its value
must be an integer greater than 2. For some special values (not all) there correspond a polygon name (e.g
"Triangle" for 3 or "Square" for 4). There is no special name for a regular polygon with 1111 edges. To
see this mapping in action, go to sheet Key mappings and change the value of NumberOfEdges in data set
Polygon #6 to "Triangle" or "Square" or 1111 and see its area on E2.

Figure 19. Key NumberOfEdges implements partial map. Assigning to it "Square" is
the same as assign it to 4.

11.4. No map
Finally, there is the identity map (a.k.a no map): The text which is assigned to the key is retrieved by KeyValue
and passed to the caller as it is.

12. Design: the basics
This section covers some basic aspects of KeyValue's design. The material is kept at the minimum just
enough to give the reader all he/she needs to use KeyValue.

All KeyValue classes, functions, templates, etc. belong to namespace ::keyvalue.

12.1. Basic types
Inspired by spreadsheet applications, KeyValue uses five basic types:

• bool;

• double;

• value::Nothing;

• ptime; and

../../ref/html/namespacekeyvalue.html
../../ref/html/classkeyvalue_1_1value_1_1Nothing.html

KeyValue User's Manual

18

• string.

The first two types above are C++ built-in types. The other three are library types.

KeyValue introduces value::Nothing to represent empty data.

To maximize portability, KeyValue uses ::std::string and ::boost::posix_time for strings and
times, resp. These types are exported to namespace ::keyvalue where they are called string and ptime
resp.

The single-value and multi-type container for basic types is value::Variant.

12.2. Values
Values assigned to keys are not always single value::Variant object. They may be containers of
value::Variant objects as well. KeyValue provides three such containers:

• value::Single;

• value::Vector; and

• value::Matrix.

Actually, bridge and core library developers do not need to care about the containers above. Indeed,
they are used exclusively inside KeyValue and, at some point, are converted to more standard types.
More precisely, a value::Single object is converted into an appropriate basic type T while a
value::Vector object becomes a ::std::vector<T> and a value::Matrix is transformed into a
::std::vector<std::vector<T> > object.

Class value::Value is a single-value and multi-type container for value::Single, value::Vector or
value::Matrix objects.

12.2.1. Hierarchy of types and multi-level implicit conversions

Only value::Value objects are returned from KeyValue to front-ends. Hence, a series of conversions must be
performed when one wants to return a more basic type. For instance, suppose that a double value x must
be returned. In that case the sequence of conversions would be:

return value::Value(value::Single(value::Variant(x)));

Statements like the one above would be needed very often, which is very annoying. Fortunately, KeyValue
implements a hierarchy tree of types that allow for multi-level implicitly conversions. Therefore, in the example
above, the simpler statement

return x;

would be implicitly converted by the compiler into the one previously shown.

The hierarchy of types constitutes a tree where each node is defined by a specialization of template struct
Parent.

12.3. Keys
Initially a key is just a text labeling a value. However, there is more inside a key that just an string object
can model. Consider the key Dates in the introductory example again. Its associated value is expected to
verify certain conditions:

• The corresponding value::Value object is made of ptime object(s) rather than, say, double ones.

• Given the plural in Dates, one can expect more than one ptime and, then value::Value's content might
be a value::Vector (of ptimes).

../../ref/html/classkeyvalue_1_1value_1_1Nothing.html
../../ref/html/namespacekeyvalue.html
../../ref/html/classkeyvalue_1_1value_1_1Variant.html
../../ref/html/classkeyvalue_1_1value_1_1Variant.html
../../ref/html/classkeyvalue_1_1value_1_1Variant.html
../../ref/html/classkeyvalue_1_1value_1_1Single.html
../../ref/html/classkeyvalue_1_1value_1_1Vector.html
../../ref/html/classkeyvalue_1_1value_1_1Matrix.html
../../ref/html/classkeyvalue_1_1value_1_1Single.html
../../ref/html/classkeyvalue_1_1value_1_1Vector.html
../../ref/html/classkeyvalue_1_1value_1_1Matrix.html
../../ref/html/classkeyvalue_1_1value_1_1Value.html
../../ref/html/classkeyvalue_1_1value_1_1Single.html
../../ref/html/classkeyvalue_1_1value_1_1Vector.html
../../ref/html/classkeyvalue_1_1value_1_1Matrix.html
../../ref/html/classkeyvalue_1_1value_1_1Value.html
../../ref/html/classkeyvalue_1_1value_1_1Value.html
../../ref/html/classkeyvalue_1_1value_1_1Single.html
../../ref/html/classkeyvalue_1_1value_1_1Variant.html
../../ref/html/structkeyvalue_1_1value_1_1Parent.html
../../ref/html/classkeyvalue_1_1value_1_1Value.html
../../ref/html/classkeyvalue_1_1value_1_1Value.html
../../ref/html/classkeyvalue_1_1value_1_1Vector.html

KeyValue User's Manual

19

• Since to each date corresponds a stock price, those dates cannot be in the future.

• Additionally, one can expect the dates to be in increasing order.

This kind of information is encapsulated by a certain class. In KeyValue terminology, those classes are called
real keys and belong to namespace ::keyvalue::key.

The class key::Key is the base of all real keys. More precisely, real keys derive from key::Traits which
derives from key::Key.

Actually, key::Traits is a template class depending on a few parameters:

ElementType
Type parameter which defines the type of elements in the output container. It can be bool, double, ptime,
string, classes defined by the core library, etc.

ConverterType
This template template parameter2 defines the class responsible to convert the input value container into
a more appropriate type for core library's use. (See Section 12.3.1, “Converter type”.)

MapType
This template template parameter2 tells how each value::Variant object in the input container must
be mapped into an ElementType object. (See Section 12.3.2, “Map type”.)

12.3.1. Converter type

Conversions between KeyValue containers value::Single, value::Vector or value::Matrix to
more standard types are responsibility of container converter classes.

KeyValue provides three such templates (described below) depending on a parameter ElementType.

key::StdSingle<ElementType>
Converts from value::Single into ElementType.

key::StdVector<ElementType>
Converts from value::Vector to ::boost::shared_ptr<std::vector<ElementType> >.

key::StdMatrix<ElementType>
Converts from value::Matrix to
::boost::shared_ptr<std::vector<std::vector<ElementType> > >.

If the core library uses non-standard containers, then bridge developers have two choices. They can either
use the converters above as a first step and then convert again to desired types; or they can implement new
container converters that produce the desired types directly from KeyValue containers. The second option
is clearly more efficient.

To implement new container converters, reading the reference documentation of the three container
converters above it strongly advised. Moreover, their implementations can serve as samples for implementing
new ones.

12.3.2. Map type

Similarly to lexical conversions but depending on the key, sometimes, each element of the input container
must be mapped to a special value. For instance, for a key Month, it may be convenient to map strings
"Jan", "Fev", ..., "Dec" into numbers 1, 2, ..., 12. This is an example of key::FlagMap.

2Template template parameters belong to the less known features of C++ and then deserve a quick note here. Most template parameters are
types. Nevertheless, sometimes a template parameter can be a template, in which case it is referred as a template template parameter. For
instance, a template Foo depending on only one template template parameter might be instantiated with Foo<std::vector> but not with
Foo<std::vector<int> >. Recall that std::vector is a template class while std::vector<int> is a class.

../../ref/html/namespacekeyvalue_1_1key.html
../../ref/html/classkeyvalue_1_1key_1_1Key.html
../../ref/html/classkeyvalue_1_1key_1_1Traits.html
../../ref/html/classkeyvalue_1_1key_1_1Key.html
../../ref/html/classkeyvalue_1_1key_1_1Traits.html
../../ref/html/classkeyvalue_1_1value_1_1Variant.html
../../ref/html/classkeyvalue_1_1value_1_1Single.html
../../ref/html/classkeyvalue_1_1value_1_1Vector.html
../../ref/html/classkeyvalue_1_1value_1_1Matrix.html
../../ref/html/classkeyvalue_1_1key_1_1StdSingle.html
../../ref/html/classkeyvalue_1_1value_1_1Single.html
../../ref/html/classkeyvalue_1_1key_1_1StdVector.html
../../ref/html/classkeyvalue_1_1value_1_1Vector.html
../../ref/html/classkeyvalue_1_1key_1_1StdMatrix.html
../../ref/html/classkeyvalue_1_1value_1_1Matrix.html
../../ref/html/classkeyvalue_1_1key_1_1FlagMap.html

KeyValue User's Manual

20

Mappings are performed by classes which implement a method to convert from a value::Variant objects
into other types of objects. Actually, they are template classes depending on a parameter named OutputType
which defines (but not necessarily matches) the real output type. The real output type might be recovered
through the member type OutputType_.

The map template classes are the following:

key::NoMap<OutputType>
Through this map, a value::Variant object holding a value x is mapped into an object of type
OutputType which has the same lexical value as x. Only front-end enabled lexical conversions are
considered. For instance, a value::Variant object holding either the double 10.1 or the string
"10.1" is mapped into the double (OutputType in this case) 10.1.

key::FlagMap<OutputType>
Some string values are accepted others not. The accepted ones are mapped into particular values
of type OutputType. In the example of key Month above, OutputType can be double, unsigned int or an
enum type.

key::PartialMap<OutputType>
Half way between key::NoMap and key::FlagMap. First, like key::NoMap, considering front-end
enabled lexical conversions, it tries to map a value::Variant value into an object of type OutputType
which has the same lexical value as x. If it fails, then, like key::FlagMap, it tries to map a string
into a corresponding value of type OutputType. For instance, the value for NumberOfEdges (of a regular
polygon) must be an unsigned int greater than 2. For some special values (not all) there correspond a
polygon name (e.g. "Triangle" for 3 or "Square" for 4). There is no special name for a regular polygon
with 1111 edges.

key::ObjectMap<OutputType>
This is a map where a string identifier is mapped into a ::boost::shared_ptr<OutputType>
pointing to an object of type OutputType. Notice that this is the only map where OutputType and
OutputType_ differ.

12.3.3. Generic keys

There are some basic properties shared by several types of keys. For instance, Price, Weight, Size, etc.,
accept only positive numeric values. Although one can implement one class for each of them, this would
imply extensive code duplication. Therefore, KeyValue implements a few generic keys which can be used for
those having basic properties. Only very specific and application dependent keys need to be implemented
as new real keys.

All generic keys set their label at construction time. They are:

key::Single<ElementType>
Key for a single object of type ElementType. No constraints on the value are set.

Example: A key labeled Number which accepts any double value is defined by

key::Single<double> key("Number");

key::Vector<ElementType>
Key for a vector of objects of type ElementType with no constraints on them. A restriction on the size of
the vector might be set on construction.

Example: A key labeled Names which expects a vector of 5 strings is defined by

key::Vector<string> key("Names", 5);

key::Matrix<ElementType>
Key for a matrix of objects of type ElementType with no constraints. A restriction on the matrix dimension
can be set at construction.

../../ref/html/classkeyvalue_1_1value_1_1Variant.html
../../ref/html/classkeyvalue_1_1key_1_1NoMap.html
../../ref/html/classkeyvalue_1_1value_1_1Variant.html
../../ref/html/classkeyvalue_1_1value_1_1Variant.html
../../ref/html/classkeyvalue_1_1key_1_1FlagMap.html
../../ref/html/classkeyvalue_1_1key_1_1PartialMap.html
../../ref/html/classkeyvalue_1_1key_1_1NoMap.html
../../ref/html/classkeyvalue_1_1key_1_1FlagMap.html
../../ref/html/classkeyvalue_1_1key_1_1NoMap.html
../../ref/html/classkeyvalue_1_1value_1_1Variant.html
../../ref/html/classkeyvalue_1_1key_1_1FlagMap.html
../../ref/html/classkeyvalue_1_1key_1_1ObjectMap.html
../../ref/html/classkeyvalue_1_1key_1_1Single.html
../../ref/html/classkeyvalue_1_1key_1_1Single.html
../../ref/html/classkeyvalue_1_1key_1_1Vector.html
../../ref/html/classkeyvalue_1_1key_1_1Vector.html
../../ref/html/classkeyvalue_1_1key_1_1Matrix.html

KeyValue User's Manual

21

Example: A key labeled Transformation which accepts a 2x3 matrix is defined by

key::Matrix<double> key("Transformation", 2, 3);

key::Positive
Key for a positive number.

Example: A key labeled Price is defined by

key::Positive key("Price");

key::StrictlyPositive
Key for a strictly positive number.

Example: If the key in the previous example could not accept the value 0, then it would be defined by

key::StrictlyPositive key("Price");

key::Bounded<ElementType, Bound1, Bound2>
Key for a single bounded value of type ElementType. Template template parameters2 Bound1 and
Bound2 define the bound types and can be either key::Greater, key::Geq (greater than or equal to),
key::Less or key::Leq (less than or equal to).

Example: A key labeled Probability accepting any double value from and including 0 up to and
including 1 is defined by

key::Bounded<double, key::Geq, key::Leq> key("Probability", 0.0, 1.0);

key::MonotoneBoundedVector<ElementType, Monotone, Bound1, Bound2>
Key for vectors whose elements are monotonic and/or bounded. Template template
parameter2 Monotone defines the type of monotonicity and can be either
key::NonMonotone, key::Increasing, key::StrictlyIncreasing, key::Decreasing,
key::StrictlyDecreasing. Bound1 and Bound2 are as in key::Bounded. Additionally, a constraint
on the vector size can be set on construction.

Example: A key labeled Probabilities accepting 10 strictly increasing numbers from and excluding
0 up to and including 1 is defined by

key::Bounded<double, key::StrictlyIncreasing, key::Greater, key::Leq>
 key("Probabilities", 0.0, 1.0, 10);

12.4. DataSet
Key-value pairs are stored in DataSets. This class implements methods getValue() and find() to
retrieve values assigned to keys. Both methods receive a real key and processes all the information about
the expected value encapsulated by the key. For instance, suppose the variable today holds the current
date and consider a key BirthDates which corresponds to a vector of increasing dates, supposedly, in the
past or today.

An appropriate real key is then:

key::MonotoneBoundedVector<ptime, key::Increasing, key::Leq>
 births("BrithDates", today);

Therefore, if key BirthDates belongs to a DataSet data, the result of

data.getValue(births);

is a ::boost::shared_ptr<const ::std::vector<ptime> > such that the elements of the pointed
vector are in increasing order and before (less than or equal to) today. The caller does not need to check that.

../../ref/html/classkeyvalue_1_1key_1_1Matrix.html
../../ref/html/classkeyvalue_1_1key_1_1Positive.html
../../ref/html/classkeyvalue_1_1key_1_1Positive.html
../../ref/html/classkeyvalue_1_1key_1_1StrictlyPositive.html
../../ref/html/classkeyvalue_1_1key_1_1StrictlyPositive.html
../../ref/html/classkeyvalue_1_1key_1_1Bounded.html
../../ref/html/classkeyvalue_1_1key_1_1Greater.html
../../ref/html/classkeyvalue_1_1key_1_1Geq.html
../../ref/html/classkeyvalue_1_1key_1_1Less.html
../../ref/html/classkeyvalue_1_1key_1_1Leq.html
../../ref/html/classkeyvalue_1_1key_1_1Bounded.html
../../ref/html/classkeyvalue_1_1key_1_1Geq.html
../../ref/html/classkeyvalue_1_1key_1_1Leq.html
../../ref/html/classkeyvalue_1_1key_1_1MonotoneBoundedVector.html
../../ref/html/classkeyvalue_1_1key_1_1NonMonotone.html
../../ref/html/classkeyvalue_1_1key_1_1Increasing.html
../../ref/html/classkeyvalue_1_1key_1_1StrictlyIncreasing.html
../../ref/html/classkeyvalue_1_1key_1_1Decreasing.html
../../ref/html/classkeyvalue_1_1key_1_1StrictlyDecreasing.html
../../ref/html/classkeyvalue_1_1key_1_1Bounded.html
../../ref/html/classkeyvalue_1_1key_1_1StrictlyIncreasing.html
../../ref/html/classkeyvalue_1_1key_1_1Greater.html
../../ref/html/classkeyvalue_1_1key_1_1Leq.html
../../ref/html/classkeyvalue_1_1DataSet.html
../../ref/html/classkeyvalue_1_1DataSet.html#a5776fa17456c25c25675625c85239c91
../../ref/html/classkeyvalue_1_1DataSet.html#afad098f1923640b9f6ac4377ac491b90
../../ref/html/classkeyvalue_1_1key_1_1MonotoneBoundedVector.html
../../ref/html/classkeyvalue_1_1key_1_1Increasing.html
../../ref/html/classkeyvalue_1_1key_1_1Leq.html
../../ref/html/classkeyvalue_1_1DataSet.html
../../ref/html/classkeyvalue_1_1DataSet.html#a5776fa17456c25c25675625c85239c91

KeyValue User's Manual

22

Since the type returned by getValue() depends on the real key it receives, this method is a template
function. The same is true for find().

The difference between getValue() and find() concerns what happens when the key is not resolved.
The former method throws an exception to indicate the failure while the latter returns a null pointer. In practice,
getValue() is used for compulsory keys and find() for optional ones. A typical use of find() follows:

bool foo(false);
if (bool* ptr = data.find(key::Single<bool>("Foo")))
 foo = *ptr;

In the code above foo is false unless key Foo is found in data, in which case, foo gets the given value.

12.5. Processors
All builders and calculators derive from class Processor. This class declares two pure virtual methods:
getName() and getResult(). The former method returns the name under which the processor is
recognized by key Processor. The second gets the result of processing a DataSet.

Actually, builders and calculators are specializations of template classes Builder and Calculator, resp.
They depend on a parameter type named either OutputType (for Builder) or Tag (for Calculator).
The primary role of these parameters is to distinguish between different specializations. For a Builder,
OutputType also defines the type of object built.

Although a Builder specialization is uniquely identified by OutputType, it also needs to be assigned to a
Tag for a unified registration process of Builders and Calculators into the global ProcessorMngr. (See
Section 13, “How to implement the bridge library” for more information on this registration process.)

Builder and Calculator specializations may implement different features which define their declaration
and implementation. Therefore, different specializations of Builder (or of Calculator) might derive
from different base classes and implement different methods. Rather than declare the specializations from
scratch, providing all its base classes and declaring all its methods, the helper files keyvalue/mngt/
DeclareBuilder.h and keyvalue/mngt/DeclareCalculator.h should be used. (See Builder and
Calculator for details).

Builder and Calculator specializations might be Commands as explained below.

12.5.1. Commands

A Processor able to process an empty DataSet might be declared a Command.

For instance, if the Processor is Builder<ObjectType>, for some ObjectType, then
Builder<ObjectType>::getObject(const DataSet& data) might do its job ignoring data (which
is the case of ListOfDataSets and NumberOfDataSets). Another way is when the method does look up values
in an empty data but, failing to find any, can still do its job considering default values for the searched keys
(with or without intervention of Default DataSet (see Section 9, “Key resolution and the Default data set”).

In either cases above, Builder<ObjectType> might be declared a Command by publicly deriving from this
class. Similar arguments hold for a Calculator<Tag>.

When a Processor is a Command some front-ends might take advantage of this fact and provide to their
users some shortcut or menu entry to call the Processor without asking for additional user's input.

12.5.2. Building from a single value

In general, the information that processors need to perform their duties is so rich that must be stored in a
DataSet. Nevertheless, in some particular cases, a single value::Variant might be enough. For instance,
consider a builder that creates a curve given a few points on it. Normally, this processor needs the set of points
together with interpolator and extrapolator methods. In this general case, a DataSet is necessary to hold
all this information. However, when the curve is known to be constant, then a single number - the constant

../../ref/html/classkeyvalue_1_1DataSet.html#a5776fa17456c25c25675625c85239c91
../../ref/html/classkeyvalue_1_1DataSet.html#afad098f1923640b9f6ac4377ac491b90
../../ref/html/classkeyvalue_1_1DataSet.html#a5776fa17456c25c25675625c85239c91
../../ref/html/classkeyvalue_1_1DataSet.html#afad098f1923640b9f6ac4377ac491b90
../../ref/html/classkeyvalue_1_1DataSet.html#a5776fa17456c25c25675625c85239c91
../../ref/html/classkeyvalue_1_1DataSet.html#afad098f1923640b9f6ac4377ac491b90
../../ref/html/classkeyvalue_1_1DataSet.html#afad098f1923640b9f6ac4377ac491b90
../../ref/html/classkeyvalue_1_1DataSet.html#afad098f1923640b9f6ac4377ac491b90
../../ref/html/classkeyvalue_1_1key_1_1Single.html
../../ref/html/classkeyvalue_1_1Processor.html
../../ref/html/classkeyvalue_1_1Processor.html#a144500b31544cf7c45c8562ebd9985fe
../../ref/html/classkeyvalue_1_1Processor.html#a3b2dfc9015c144569a8bb7928e15acbf
../../ref/html/classkeyvalue_1_1DataSet.html
../../ref/html/classkeyvalue_1_1Builder.html
../../ref/html/classkeyvalue_1_1Calculator.html
../../ref/html/classkeyvalue_1_1Builder.html
../../ref/html/classkeyvalue_1_1Calculator.html
../../ref/html/classkeyvalue_1_1Builder.html
../../ref/html/classkeyvalue_1_1Builder.html
../../ref/html/classkeyvalue_1_1Builder.html
../../ref/html/classkeyvalue_1_1Calculator.html
../../ref/html/classkeyvalue_1_1ProcessorMngr.html
../../ref/html/classkeyvalue_1_1Builder.html
../../ref/html/classkeyvalue_1_1Calculator.html
../../ref/html/classkeyvalue_1_1Builder.html
../../ref/html/classkeyvalue_1_1Calculator.html
../../ref/html/classkeyvalue_1_1Builder.html
../../ref/html/classkeyvalue_1_1Calculator.html
../../ref/html/classkeyvalue_1_1Builder.html
../../ref/html/classkeyvalue_1_1Calculator.html
../../ref/html/classkeyvalue_1_1Command.html
../../ref/html/classkeyvalue_1_1Processor.html
../../ref/html/classkeyvalue_1_1DataSet.html
../../ref/html/classkeyvalue_1_1Command.html
../../ref/html/classkeyvalue_1_1Processor.html
../../ref/html/classkeyvalue_1_1Builder.html
../../ref/html/classkeyvalue_1_1Builder.html
../../ref/html/classkeyvalue_1_1Builder.html#a5e5d80be343b1ffaef336fd85ca9377d
../../ref/html/classkeyvalue_1_1DataSet.html
../../ref/html/classkeyvalue_1_1DataSet.html
../../ref/html/classkeyvalue_1_1Builder.html
../../ref/html/classkeyvalue_1_1Command.html
../../ref/html/classkeyvalue_1_1Calculator.html
../../ref/html/classkeyvalue_1_1Processor.html
../../ref/html/classkeyvalue_1_1Command.html
../../ref/html/classkeyvalue_1_1Processor.html
../../ref/html/classkeyvalue_1_1DataSet.html
../../ref/html/classkeyvalue_1_1value_1_1Variant.html
../../ref/html/classkeyvalue_1_1DataSet.html

KeyValue User's Manual

23

- is enough. Rather than creating a DataSet to store a single number, it would be more convenient if the
processor could accept just this value (or more generally, a value::Variant). This is, indeed, the case.

Any Builder specialization which can build from a value::Variant object must derive from template
class BuilderFromVariant. Additionally, it also must derive from at least one instantiation of template
class BuilderFrom.

12.6. Exceptions and Messages
The abstract class Message defines the interface for all types of messages. MessageImpl is a template class
which implements Message's pure virtual methods. There are six different specializations of MessageImpl
with corresponding typedefs:

• Error;

• Logic;

• Info;

• Warning;

• Report; and

• Debug.

They define operator&() to append formated data to themselves. A typical use follows:

Info info(1); // Create a level-1 Info message.
size_t i;
std::vector<double> x;
//...
info & "x[" & i & "] = " & x[i] & '\n';

Similarly, exception::Exception is an abstract class whose pure virtual methods are implemented
by template class exception::ExceptionImpl. This template class has a member which is
an instantiation of MessageImpl. The exact instantiation is provided as a template parameter of
exception::ExceptionImpl. There are two specializations of exception::ExceptionImpl with
corresponding typedefs:

• RuntimeError (having an Error member); and

• LogicError (having a Logic member).

RuntimeError indicates errors that can be detected only at runtime depending on user data. LogicError
indicates errors that should be detected at development time. In other terms, a LogicError means a bug
and is thrown when a program invariant fails. It is mainly used through macro KV_ASSERT as in

KV_ASSERT(i < getSize(), "Out of bound!");

To keep compatibility with exception handlers catching standard exceptions, RuntimeError derives from
::std::runtime_error while LogicError derives from ::std::logic_error.

Method exception::ExceptionImpl::operator&() provides the same functionality of
MessageImpl::operator&(). Example:

if (price <= 0.0)
 throw RuntimeError() & "Invalid price. Expecting a positive number. Got " &
 price;

Other more specific exception classes are implemented to indicate errors that need special treatment. They
all derive from either RuntimeError or LogicError.

../../ref/html/classkeyvalue_1_1DataSet.html
../../ref/html/classkeyvalue_1_1value_1_1Variant.html
../../ref/html/classkeyvalue_1_1Builder.html
../../ref/html/classkeyvalue_1_1value_1_1Variant.html
../../ref/html/classkeyvalue_1_1BuilderFromVariant.html
../../ref/html/classkeyvalue_1_1BuilderFrom.html
../../ref/html/classkeyvalue_1_1Message.html
../../ref/html/classkeyvalue_1_1MessageImpl.html
../../ref/html/classkeyvalue_1_1Message.html
../../ref/html/classkeyvalue_1_1MessageImpl.html
../../ref/html/classError.html
../../ref/html/classLogic.html
../../ref/html/classInfo.html
../../ref/html/classWarning.html
../../ref/html/classReport.html
../../ref/html/classDebug.html
../../ref/html/classkeyvalue_1_1Message.html#a69a7ff5dd222856a6e75774b4256edaf
../../ref/html/classInfo.html
../../ref/html/classkeyvalue_1_1exception_1_1Exception.html
../../ref/html/classkeyvalue_1_1exception_1_1ExceptionImpl.html
../../ref/html/classkeyvalue_1_1MessageImpl.html
../../ref/html/classkeyvalue_1_1exception_1_1ExceptionImpl.html
../../ref/html/classkeyvalue_1_1exception_1_1ExceptionImpl.html
../../ref/html/classRuntimeError.html
../../ref/html/classError.html
../../ref/html/classLogicError.html
../../ref/html/classLogic.html
../../ref/html/classRuntimeError.html
../../ref/html/classLogicError.html
../../ref/html/classLogicError.html
../../ref/html/KV__ASSERT_8h.html#fad7650e00df7b2f687cd1213444e569
../../ref/html/KV__ASSERT_8h.html#fad7650e00df7b2f687cd1213444e569
../../ref/html/classRuntimeError.html
../../ref/html/classLogicError.html
../../ref/html/classkeyvalue_1_1exception_1_1ExceptionImpl.html
../../ref/html/classkeyvalue_1_1exception_1_1ExceptionImpl.html#ad8c0ebdbc2ca4414f7707cfc717e27ec
../../ref/html/classkeyvalue_1_1MessageImpl.html
../../ref/html/classkeyvalue_1_1Message.html#a69a7ff5dd222856a6e75774b4256edaf
../../ref/html/classRuntimeError.html
../../ref/html/classRuntimeError.html
../../ref/html/classLogicError.html

KeyValue User's Manual

24

13. How to implement the bridge library
The bridge library connects KeyValue with the core library. KeyValue comes with an example bridge which
can be used as a sample for bridge developers.

The implementation of a bridge library is composed of three tasks.

• Implementing class Bridge:

This class provides information about the core library, e.g., its name and greeting messages. (See
Section 13.1, “How to implement class Bridge”.)

• Implementing and registering processors:

The bridge implements a certain number of processors to be called by users through key Processor. (See
Section 13.2, “How to implement a processor”.)

The global ProcessorMngr (accessible through Global) is responsible for retrieving a processor
provided its name. Therefore, every Processor must register itself into the global ProcessorMngr at
KeyValue's initialization.

The suggested registration method is the following. Bridge developers copy files bridge-example/
Register.h and bridge-example/Register.cpp to their own source directory to be compiled and
linked as their own source files. File Register.cpp is left as it is while file Register.h is edited (see
instructions there in) to list the Tags that identify the various processors.

• Implementing keys:

KeyValue comes with a few generic keys but other application specific keys can be implemented. (See
Section 13.3, “How to implement a key”.)

13.1. How to implement class Bridge
Some methods of class Bridge are implemented by KeyValue itself. However there are three public
methods which are left to the bridge developer. (See example in bridge-example/bridge-example/
Bridge.cpp):

const char*
getCoreLibraryName() const;

Returns the name of the core library. The result also names the function called in OpenOffice Calc or Excel
spreadsheets and, for that reason, must be a single word (no white spaces). Otherwise front-ends might get
in trouble.

const char*
getSimpleInfo() const;

Returns a simple description (one line long) of the core library. This message is used by Excel add-in manager.

const char*
getCompleteInfo() const;

Returns a more detailed description of the core library. This message is presented by loggers when they
are initialized.

13.2. How to implement a processor
Builder and Calculator specializations (the two flavors of Processor), are implemented in similar ways.
Firstly, let us see how to implement the latter and then cover the differences for the former.

../../ref/html/classkeyvalue_1_1Bridge.html
../../ref/html/classkeyvalue_1_1ProcessorMngr.html
../../ref/html/classkeyvalue_1_1util_1_1Global.html
../../ref/html/classkeyvalue_1_1Processor.html
../../ref/html/classkeyvalue_1_1ProcessorMngr.html
../../ref/html/classkeyvalue_1_1Bridge.html
../../ref/html/classkeyvalue_1_1Bridge.html#a6d5946a7f92a716713a9e952a39a6c69
../../ref/html/classkeyvalue_1_1Bridge.html#a1cd37d15c6332fb1d7728ed98917fd16
../../ref/html/classkeyvalue_1_1Bridge.html#af11feab7b95705193981150c60b81de8
../../ref/html/classkeyvalue_1_1Builder.html
../../ref/html/classkeyvalue_1_1Calculator.html
../../ref/html/classkeyvalue_1_1Processor.html

KeyValue User's Manual

25

13.2.1. Implementing a Calculator specialization

As previously said, to get the proper declaration one should use the helper file keyvalue/mngt/
DeclareCalculator.h.

After having #included the required header files (notably, keyvalue/mngt/Calculator.h) and open
the namespace keyvalue:

#include "keyvalue/mngt/Calculator.h"
// Include other required header files

namespace keyvalue {

we #define the macro TAG to be a word that uniquely identifies the specialization to be implemented. For
sake of concreteness, say this word is Foo. Then we do

#define TAG Foo

Now, provided the specialization is a Command we #define the macro COMMAND:

#define COMMAND // Must be defined if, and only if, the calculator is a Command

Then the helper file is included:

#include "keyvalue/mngt/DeclareCalculator.h"

The steps above provide the correct declaration of the specialization. In the example, it is
Calculator<tag::Foo>. (It is worth mentionning that keyvalue/mngt/DeclareCalculator.h will
declare a type Foo in namespace tag.)

Now we implement a few methods. The first one is

const char*
Calculator<tag::Foo>::getName() const;

which returns the name to be assigned to key Processor when the user wants to call this specialization.

Provided the specialization is a Command, the following method is implemented

const char*
Calculator<tag::Foo>::getCommandName() const;

It returns an alternative name which front-ends might use when calling this specialization as a Command. For
example, when an empty DataSet is given to processor DeleteDataSets the whole repository is cleared.
Since this is exactly what happens when processor DeleteDataSets is called as a command, then the name
"Reset repository" seems appropriate to appear in a menu.

The last method to be implemented is

value::Value
Calculator<tag::Foo>::getValue(const DataSet& data) const;

which processes DataSet data and returns a value::Value computed based on data's key-value pairs.
Recall that value::Value belongs to the hierarchy of types which allows for multi-level implicit conversions.
(See Section 12.2.1, “Hierarchy of types and multi-level implicit conversions”.) Therefore, any type below
value::Value in the hierarchy might be returned without further ado.

KeyValue implements a memoization system to prevent recalculating when the input key-value pairs
in data have not changed since last call. To use this feature, after having retrieve all values
by calling data.getValue()or data.find(), Calculator<tag::Foo>::getValue() must call

../../ref/html/classkeyvalue_1_1Command.html
../../ref/html/classkeyvalue_1_1Command.html
../../ref/html/classkeyvalue_1_1Calculator.html
../../ref/html/classkeyvalue_1_1Calculator.html
../../ref/html/classkeyvalue_1_1Calculator.html#a2ad8ebd431528d7f92ce9a2fa14ccb34
../../ref/html/classkeyvalue_1_1Command.html
../../ref/html/classkeyvalue_1_1Calculator.html
../../ref/html/classkeyvalue_1_1Command.html#a0fe964845672ed4f7b51c5ba79644df6
../../ref/html/classkeyvalue_1_1Command.html
../../ref/html/classkeyvalue_1_1DataSet.html
../../ref/html/classkeyvalue_1_1value_1_1Value.html
../../ref/html/classkeyvalue_1_1Calculator.html
../../ref/html/classkeyvalue_1_1Calculator.html#a4e508f61fe9c57d956b14cf061475858
../../ref/html/classkeyvalue_1_1DataSet.html
../../ref/html/classkeyvalue_1_1DataSet.html
../../ref/html/classkeyvalue_1_1value_1_1Value.html
../../ref/html/classkeyvalue_1_1value_1_1Value.html
../../ref/html/classkeyvalue_1_1value_1_1Value.html
../../ref/html/classkeyvalue_1_1DataSet.html#a5776fa17456c25c25675625c85239c91
../../ref/html/classkeyvalue_1_1DataSet.html#afad098f1923640b9f6ac4377ac491b90
../../ref/html/classkeyvalue_1_1Calculator.html
../../ref/html/classkeyvalue_1_1Calculator.html#a4e508f61fe9c57d956b14cf061475858

KeyValue User's Manual

26

data.mustUpdate() which returns true if the value must be recalculated (or false, otherwise). If
the value does need to be recalculated, then Calculator<tag::Foo>::getValue() computes the
value and returns it. Otherwise, Calculator<tag::Foo>::getValue()must return a default constructed
value::Value.

Finally we close namespace ::keyvalue

} // namespace keyvalue

13.2.2. Implementing a Builder specialization

The first difference in respect to implementing a Calculator specialization is the helper file to be used:
keyvalue/mngt/DeclareBuilder.h.

Macros TAG and COMMAND are used exaclty as before. Additionally the macro OBJECT_TYPE must be
#defined as the type of object built by the specialization. Consider the example of the processor Logger.
(See keyvalue/bridge/processor/Logger.cpp.) We have

#define OBJECT_TYPE logger::Logger

Notice that we provide the fully qualified typename (as recognized from namespace ::keyvalue). For
Builders, in contrast to Calculator specializations, it is this typename (rather than the one given by macro
TAG) which parametrizes the template class. Therefore, in the example, the methods to be implemented are
members of Builder<logger::Logger>.

Other four macros might be #defined depending on the Builder being able to build the object from a
single value. Those macros are BUILDS_FROM_BOOL, BUILDS_FROM_DOUBLE, BUILDS_FROM_PTIME and
BUILDS_FROM_STRING. To each of these macros corresponds a method which the user must implement
when the macro is defined. For instance, if BUILD_FROM_DOUBLE is defined, then one must provide the
implementation of the following method

shared_ptr<ObjectType>
Builder<ObjectType>::getObject(const bool& data) const;

where ObjectType is the same type used to #define OBJECT_TYPE.

Its worthing remember that all macros must be defined before we #include keyvalue/mngt/
DeclareBuilder.h.

Recall that one must also implement the method

shared_ptr<ObjectType>
Builder<ObjectType>::getObject(const DataSet& data) const;

13.3. How to implement a key
Key functionalities belong to namespace ::keyvalue::key and all keys should be in this namespace as
well.

The basics for implementing keys were explained in Section 12.3, “Keys”. In particular, we have seen that all
keys derive from template key::Traits. For instance,

namespace keyvalue {
 namespace key {
 class MyKey : public Traits<double, StdSingle, NoMap> {
 // ...
 };
 }
}

../../ref/html/classkeyvalue_1_1DataSet.html#a662b716034e763ed2ca4c11f1668f103
../../ref/html/classkeyvalue_1_1Calculator.html
../../ref/html/classkeyvalue_1_1Calculator.html#a4e508f61fe9c57d956b14cf061475858
../../ref/html/classkeyvalue_1_1Calculator.html
../../ref/html/classkeyvalue_1_1Calculator.html#a4e508f61fe9c57d956b14cf061475858
../../ref/html/classkeyvalue_1_1value_1_1Value.html
../../ref/html/classkeyvalue_1_1Calculator.html
../../ref/html/namespacekeyvalue_1_1logger.html
../../ref/html/classkeyvalue_1_1logger_1_1Logger.html
../../ref/html/namespacekeyvalue.html
../../ref/html/classkeyvalue_1_1Builder.html
../../ref/html/classkeyvalue_1_1Calculator.html
../../ref/html/classkeyvalue_1_1Builder.html
../../ref/html/namespacekeyvalue_1_1logger.html
../../ref/html/classkeyvalue_1_1logger_1_1Logger.html
../../ref/html/classkeyvalue_1_1Builder.html
../../ref/html/classkeyvalue_1_1Builder.html
../../ref/html/classkeyvalue_1_1Builder.html
../../ref/html/classkeyvalue_1_1Builder.html#a5e5d80be343b1ffaef336fd85ca9377d
../../ref/html/namespacekeyvalue_1_1key.html
../../ref/html/classkeyvalue_1_1key_1_1Traits.html

KeyValue User's Manual

27

is the prototype for a key accepting a single double value which is not mapped. (Actually, the second and
third of key::Traits' parameters above are the default choices and, then, could be omitted.)

The choices of key::Traits parameters impose some methods to be implemented by derived classes.
Those methods are divided in two categories: checking- and mapping- methods.

13.3.1. Checking methods

The third parameter of key::Traits, namely MapType, is a template class which defines the type of output
value, OutputType_. More precisely, this is the type that one gets when passes the key (i.e., the class derived
from key::Traits) to DataSet::getValue().

The checks performed on the output value depend on its type. For instance, one can check the size of a vector
but not that of a single. Regardless the ConverterType, key::Traits implements all required checking
methods. Actually, the provided implementations accept all values (no check at all). When the developer wants
a proper check, then the corresponding method can be overridden. To indicate invalid values RuntimeError
exception must thrown.

KeyValue implements three templates that can be assigned to ConverterType. They depend on a type
parameter ElementType which, in general, matches its homonym provided to key::Traits. The only
exception is when the MapType parameter given to key::Traits is key::ObjectMap. In this case, the
ConverterType is instantiated for ::boost::shared_ptr<ElementType>.

key::StdSingle<ElementType>
This is the default choice and can be omitted when key::Traits' third parameter is so.

For this choice OutputType_ is the same as ElementType and the method called to validate the output
has the following signature:

void
checkOutput(const OutputType_& output) const;

key::StdVector<ElementType>
In this case, OutputType_ is ::boost::shared_ptr<std::vector<ElementType> >. The method
that validates the output has the same signature as for key::StdSingle seen above.

There is a method for checking the vector size, declared as follows:

void
checkSize(size_t size) const;

Additionally, there is a method to check the output while it is still being calculated. This is useful to indicate
errors as earlier as possible. For instance, consider a vector which is expected to have a huge number of
increasing elements. If the second element is not greater than the first one, the method can immediately
spot the problem and avoid to process from the third element onwards. The signature is

void
checkSoFar(const ConverterType<ElementType>& container) const;

Notice that it receives a ConverterType<ElementType>, which in this case, is
key::StdVector<ElementType>. This type provides accessor methods to the output vector being
constructed.

key::StdMatrix<ElementType>
Here OutputType_ is ::boost::shared_ptr<std::vector<std::vector<ElementType> > >.
The method that validates the output has the same signature as for key::StdSingle seen above. The
method for checking the matrix dimensions is

void
checkSize(size_t nRows, size_t nCols) const;

../../ref/html/classkeyvalue_1_1key_1_1Traits.html
../../ref/html/classkeyvalue_1_1key_1_1Traits.html
../../ref/html/classkeyvalue_1_1key_1_1Traits.html
../../ref/html/classkeyvalue_1_1key_1_1Traits.html
../../ref/html/classkeyvalue_1_1DataSet.html
../../ref/html/classkeyvalue_1_1DataSet.html#a5776fa17456c25c25675625c85239c91
../../ref/html/classkeyvalue_1_1key_1_1Traits.html
../../ref/html/classRuntimeError.html
../../ref/html/classkeyvalue_1_1key_1_1Traits.html
../../ref/html/classkeyvalue_1_1key_1_1Traits.html
../../ref/html/classkeyvalue_1_1key_1_1ObjectMap.html
../../ref/html/classkeyvalue_1_1key_1_1StdSingle.html
../../ref/html/classkeyvalue_1_1key_1_1Traits.html
../../ref/html/classkeyvalue_1_1key_1_1StdVector.html
../../ref/html/classkeyvalue_1_1key_1_1StdSingle.html
../../ref/html/classkeyvalue_1_1key_1_1StdVector.html
../../ref/html/classkeyvalue_1_1key_1_1StdMatrix.html
../../ref/html/classkeyvalue_1_1key_1_1StdSingle.html

KeyValue User's Manual

28

Finally, a method for checking the output as the computation runs has the same
signature as for key::StdVector seen above. However, here ConverterType<ElementType> is
key::StdMatrix<ElementType>.

13.3.2. Mapping methods

Third parameter of key::Traits, namely MapType, defines the type of mapping as introduced in
Section 12.3.2, “Map type”. The value assigned to this parameter should be a template class chosen among
four possibilities.

In many circumstances, MapType do not need to be explicitly provided by the user since the compiler can
automatically deduce it. The choice follows a simple rule: if key::Traits parameter ElementType is bool,
double, string, ptime or unsigned int, then key::NoMap will be selected; else if ElementType is an
enum then key::FlagMap will be choosen. Otherwise, key::ObjectMap will be selected because the
KeyValue assumes ElementType is a type defined by the core library and for which a Builder specialization
is implemented.

Map types key::NoMap and key::ObjectMap do not impose any constraint on key::Traits derived
classes. Luckily the constraint imposed on key::Traits derived classes when either key::FlagMap or
key::PartialMap is selected is just a matter of implementing one method with the following signature:

OutputType
get(const string& name) const = 0;

Here, OutputType is the same as the parameter ElementType used to instantiate key::Traits. This
method receives a string object and maps it to the correct value of type OutputType or, if it fails, throws
a RuntimeError.

14. Linking with KeyValue
The instructions in config/config.mak tell you to leave variables FELIBS_debug and FELIBS_release
as they are in order to link KeyValue with the examples of core and bridge libraries. However, you must
change these variables to point to your own core and bridge libraries' paths in order to link KeyValue with
them. You can use either absolute or relative paths. Relative paths are taken from excel-addin and/or
openoffice-addin directories.

If you are a Microsoft Visual Studio user, then you must use multi-threaded runtime libraries to compile you
core and bridge libraries. More precisely you have two options depending on your build system:

Microsoft Visual Studio build system
Follow the instructions below if you build your core and bridge libraries using Microsoft Visual Studio
build system. (This is the default method choosen when you set up your libraries using Microsoft Visual
Studio's IDE.)

1. Open Microsoft Visual Studio and your core project.

2. Open the solution explorer (Ctrl+Alt+L).

3. Right-click on you core project.

4. Select: Properties -> Configuration Properties -> C/C++ -> Code Generation.

5. On the right panel on the properties page, select the correct Runtime Library depending on
configuration as below:

a. For Debug configuration choose "Multi-threaded debug (/MTd)";

b. For Release configuration choose "Multi-threaded (/MT)".

Remark: (a) and (b) above do not say to choose the "DLL" libraries.

../../ref/html/classkeyvalue_1_1key_1_1StdVector.html
../../ref/html/classkeyvalue_1_1key_1_1StdMatrix.html
../../ref/html/classkeyvalue_1_1key_1_1Traits.html
../../ref/html/classkeyvalue_1_1key_1_1Traits.html
../../ref/html/classkeyvalue_1_1key_1_1NoMap.html
../../ref/html/classkeyvalue_1_1key_1_1FlagMap.html
../../ref/html/classkeyvalue_1_1key_1_1ObjectMap.html
../../ref/html/classkeyvalue_1_1Builder.html
../../ref/html/classkeyvalue_1_1key_1_1NoMap.html
../../ref/html/classkeyvalue_1_1key_1_1ObjectMap.html
../../ref/html/classkeyvalue_1_1key_1_1Traits.html
../../ref/html/classkeyvalue_1_1key_1_1Traits.html
../../ref/html/classkeyvalue_1_1key_1_1FlagMap.html
../../ref/html/classkeyvalue_1_1key_1_1PartialMap.html
../../ref/html/classkeyvalue_1_1key_1_1Traits.html
../../ref/html/classRuntimeError.html

KeyValue User's Manual

29

Figure 20. Choosing the right runtime libraries.

Repeat steps (3) - (5) for your bridge library and for any other library you want to link with KeyValue.

Another build system
Follow the instruction below if you build your core and bridge libraries using another build system (e.g.,
makefiles, bjam, etc).

1. Make sure you pass to MSVC compiler (cl.exe) the apropriate option regarding the runtime libraries:

a. Use /MTd for debug build.

b. Use /MT for release build.

If for some reason you are not happy to compile your libraries using the options above, then you can change
KeyValues'. However, the openoffice add-in will not build anymore; only the Excel add-in will. To change
KeyValue's compiling options open the file config/windows-msvc.mak in any text editor and edit the lines
below

debug : OBJ_FLAGS += -D_DEBUG -Od -Gm -RTC1 -MTd -ZI
release : OBJ_FLAGS += -DNDEBUG -O2 -Oi -GL -FD -MT -Gy -Zi

replacing the -MTd and -MT according to your preferences. You might need to rebuild KeyValue (clean and
build again).

15. The Excel add-in
The Excel add-in has two particular features describred in the sequel.

15.1. The help file
A help file in compressed HTML format can be associated to the Excel add-in. This file must be named
manual.chm and be located in the directory containning the add-in. Then under the Excel function wizard for
KEYVALUE function (or whatever is the name provided by the bridge), one can click on "Help on this function"
to open manual.chm.

The file will be open by the program associated with extendion .chm at the position mapped to ID number
1000. For instance, the .chm of this user manual is called manual.chm and maps the ID number 1000 to
Section 5, “The KEYVALUE function”.

KeyValue User's Manual

30

Instructions on how to create .chm files and how to map ID number to anchors is outside of the scope of
this document.

15.2. The menu of commands
As explained in Section 7.1.1, “Commands”, Excel add-in provides special support for commands. Under the
add-in menu on the menu bar, it presents a menu named after the core library from which one can call any
command. The result of the command can be seen on the global logger.

	KeyValue User's Manual
	Table of Contents
	1. Introduction
	2. Download and install
	2.1. Compiler
	2.2. Build tools
	2.3. Boost
	2.4. Cygwin
	2.5. OpenOffice SDK
	2.6. Excel SDK

	3. Configure and build
	3.1. Using Microsoft Visual Studio 2008 IDE

	4. Getting started with KeyValue
	5. The KEYVALUE function
	6. Key-value patterns
	6.1. Key in single
	6.2. Keys in vector
	6.3. Keys in matrix
	6.4. Table

	7. Reserved keys
	7.1. Processor
	7.1.1. Commands

	7.2. ProcessNow
	7.3. VectorOutput
	7.4. Imports
	7.5. Export

	8. Reserved processors
	8.1. Logger
	8.2. NumberOfDataSets
	8.3. ListOfDataSets
	8.4. DeleteDataSets

	9. Key resolution and the Default data set
	9.1. Importing a value from another key
	9.2. Importing all key-value pairs from other data sets
	9.3. Importing key-values from Default data set

	10. Lexical conversions
	11. Key mappings
	11.1. Object map
	11.2. Flag map
	11.3. Partial map
	11.4. No map

	12. Design: the basics
	12.1. Basic types
	12.2. Values
	12.2.1. Hierarchy of types and multi-level implicit conversions

	12.3. Keys
	12.3.1. Converter type
	12.3.2. Map type
	12.3.3. Generic keys

	12.4. DataSet
	12.5. Processors
	12.5.1. Commands
	12.5.2. Building from a single value

	12.6. Exceptions and Messages

	13. How to implement the bridge library
	13.1. How to implement class Bridge
	13.2. How to implement a processor
	13.2.1. Implementing a Calculator specialization
	13.2.2. Implementing a Builder specialization

	13.3. How to implement a key
	13.3.1. Checking methods
	13.3.2. Mapping methods

	14. Linking with KeyValue
	15. The Excel add-in
	15.1. The help file
	15.2. The menu of commands

